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Abstract
Introducing an H-Hopf algebroid structure into Uq,p(ŝl2), we investigate the
vertex operators of the elliptic quantum group Uq,p(ŝl2) defined as intertwining
operators of infinite dimensional Uq,p(ŝl2) modules. We show that the vertex
operators coincide with the previous results obtained indirectly by using
the quasi-Hopf algebra Bq,λ(ŝl2). This shows a consistency of our H-Hopf
algebroid structure even in the case with a nonzero central element.

PACS numbers: 02.20.Uw, 02.90.+p, 05.50.+q
Mathematics Subject Classification: 16W30, 17B37, 17B67, 17B69, 81R50

1. The elliptic algebra Uq, p(ŝl2)

In this section, we review a definition of the elliptic algebra Uq,p(ŝl2) and its RLL formulation
following [1, 2].

1.1. Definition of Uq,p(ŝl2)

The elliptic algebra Uq,p(ŝl2) was introduced in [1] as an elliptic analogue of the quantum affine
algebra Uq(ŝl2) in the Drinfeld realization. It was soon realized that Uq,p(ŝl2) is isomorphic to
the tensor product of Uq(ŝl2) and a Heisenberg algebra {P, eQ} [2]. We here define Uq,p(ŝl2)

along the latter observation.
Let us fix a complex number q such that q �= 0, |q| < 1.

Definition 1.1 [3]. For a field K, the quantum affine algebra K[Uq(ŝl2)] in the Drinfeld
realization is an associative algebra over K generated by the Drinfeld generators an(n ∈
Z�=0), x

±
n (n ∈ Z), h, c, d. The defining relations are given as follows:

c : central,

[h, d] = 0, [d, an] = nan,
[
d, x±

n

] = nx±
n ,

[h, an] = 0, [h, x±(z)] = ±2x±(z),
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[an, am] = [2n]q[cn]q
n

q−c|n|δn+m,0,

[an, x
+(z)] = [2n]q

n
q−c|n|znx+(z),

[an, x
−(z)] = − [2n]q

n
znx−(z),

(z − q±2w)x±(z)x±(w) = (q±2z − w)x±(w)x±(z),

[x+(z), x−(w)] = 1

q − q−1

(
δ

(
q−c z

w

)
ψ(qc/2w) − δ

(
qc z

w

)
ϕ(q−c/2w)

)
,

where [n]q = qn−q−n

q−q−1 , δ(z) = ∑
n∈Z

zn and

x±(z) =
∑
n∈Z

x±
n z−n,

ψ(qc/2z) = qh exp

(
(q − q−1)

∑
n>0

anz
−n

)
,

ϕ(q−c/2z) = q−h exp

(
−(q − q−1)

∑
n>0

a−nz
n

)
.

Let r be a complex parameter. We set r∗ = r − c, p = q2r and p∗ = q2r∗
. We define the

Jacobi theta functions [u] and [u]∗ by

[u] = qu2/r−u

(p;p)3∞
�p(q2u), [u]∗ = qu2/r∗−u

(p∗;p∗)3∞
�p∗(q2u),

where

�p(z) = (z;p)∞(p/z;p)∞(p;p)∞,

(z;p1, p2, . . . , pm)∞ =
∞∏

n1,n2,...,nm=0

(
1 − zp

n1
1 p

n2
2 · · · pnm

m

)
.

Setting p = e−2π i/τ , [u] satisfies the quasi-periodicity [u + r] = −[u], [u + rτ ] =
e−π i(2u/r+τ)[u].

We denote by {P, eQ} a Heisenberg algebra commuting with C[Uq(ŝl2)] and satisfying

[P, eQ] = −eQ. (1.1)

We take the realization Q = ∂
∂P

. We set H = CP ⊕ Cr∗ and H ∗ = CQ ⊕ C
∂

∂r∗ with the
pairing 〈 , 〉

〈Q,P 〉 = 1 =
〈

∂

∂r∗ , r∗
〉
,

the others are zero.
We also consider the Abelian group H̄ ∗ = ZQ. We denote by C[H̄ ∗] the group algebra

over C of H̄ ∗, and by eα the element of C[H̄ ∗] corresponding to α ∈ H̄ ∗. These eα satisfy
eαeβ = eα+β and (eα)−1 = e−α . In particular, e0 = 1 is the identity element.

Now we take the power series field F = C((P, r∗)) as K and consider the semi-direct
product C-algebra Uq,p(ŝl2) = F[Uq(ŝl2)] ⊗C C[H̄ ∗] of F[Uq(ŝl2)] and C[H ∗], whose
multiplication is defined by

(f (P, r∗)a ⊗ eα) · (g(P, r∗)b ⊗ eβ) = f (P, r∗)g(P + 〈α, P 〉, r∗)ab ⊗ eα+β,

a, b ∈ C[Uq(ŝl2)], f (P, r∗), g(P, r∗) ∈ F, α, β ∈ H̄ ∗.
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Let us consider the following generating functions:

u+(z, p) = exp

(∑
n>0

1

[r∗n]q
a−n(q

rz)n

)
, u−(z, p) = exp

(
−
∑
n>0

1

[rn]q
an(q

−rz)−n

)
.

We define an automorphism φr of C[Uq(ŝl2)] by

c 	→ c, h 	→ h, d 	→ d,

x+(z) 	→ u+(z, p)x+(z), x−(z) 	→ x−(z)u−(z, p),

ψ(z) 	→ u+(qc/2z, p)ψ(z)u−(q−c/2z, p),

ϕ(z) 	→ u+(q−c/2z, p)ϕ(z)u−(qc/2z, p).

Definition 1.2. We define E(u), F (u),K(u) ∈ Uq,p(ŝl2)[[u]] and d̂ by the following formulae:

E(u) = φr(x
+(z)) e2Qz−(P−1)/r∗

,

F (u) = φr(x
−(z))z(P +h−1)/r ,

K(u) = exp

(∑
n>0

[n]q
[2n]q[r∗n]q

a−n(q
cz)n

)
exp

(
−
∑
n>0

[n]q
[2n]q[rn]q

anz
−n

)
× eQz−c(2P−1)/4rr∗+h/2r ,

d̂ = d − 1

4r∗ (P − 1)(P + 1) +
1

4r
(P + h − 1)(P + h + 1),

where we set z = q2u. We call E(u), F (u),K(u) the elliptic currents.

In fact, from definition 1.1 and (1.1), we can derive the following relations.

Proposition 1.3.

c : central,

[h, an] = 0, [h,E(u)] = 2E(u), [h, F (u)] = −2F(u),

[d̂, h] = 0, [d̂, an] = nan,

[d̂, E(u)] =
(

−z
∂

∂z
− 1

r∗

)
E(u), [d̂, F (u)] =

(
−z

∂

∂z
− 1

r

)
F(u),

[an, am] = [2n]q[cn]q
n

q−c|n|δn+m,0,

[an, E(u)] = [2n]q
n

q−c|n|znE(u),

[an, F (u)] = − [2n]q
n

znF (u),

E(u)E(v) = [u − v + 1]∗

[u − v − 1]∗
E(v)E(u),

F (u)F (v) = [u − v − 1]

[u − v + 1]
F(v)F (u),

[E(u), F (v)] = 1

q − q−1

(
δ

(
q−c z

w

)
H +(qc/2w) − δ

(
qc z

w

)
H−(q−c/2w)

)
,

where z = q2u, w = q2v ,

H±(z) = κK

(
u ± 1

2

(
r − c

2

)
+

1

2

)
K

(
u ± 1

2

(
r − c

2

)
− 1

2

)
,

κ = lim
z→q−2

ξ(z;p∗, q)

ξ(z;p, q)
, ξ(z;p, q) = (q2z;p, q4)∞(pq2z;p, q4)∞

(q4z;p, q4)∞(pz;p, q4)∞
.

3
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In particular, we have the following relations which, together with the last three relations in
the above, appeared in [1].

Proposition 1.4.

K(u)K(v) = ρ(u − v)K(v)K(u),

K(u)E(v) =
[
u − v + 1−r∗

2

]∗[
u − v − 1+r∗

2

]∗ E(v)K(u),

K(u)F (v) =
[
u − v − 1+r

2

][
u − v + 1−r

2

]F(v)K(u),

H +(u)H−(v) =
[
u − v − 1 − c

2

][
u − v + 1 − c

2

] [
u − v + 1 + c

2

]∗[
u − v − 1 + c

2

]∗ H−(v)H +(u),

H±(u)H±(v) = [u − v − 1]

[u − v + 1]

[u − v + 1]∗

[u − v − 1]∗
H±(v)H±(u),

where

ρ(u) = ρ+∗(u)

ρ+(u)
, ρ+(u) = z1/2r {pq2z}2

{pz}{pq4z}
{z−1}{q4z−1}

{q2z−1}2
, {z} = (z;p, q4)∞,

ρ+∗(u) = ρ+(u)|r→r∗ .

Definition 1.5. We call a set (F[Uq(ŝl2)] ⊗C C[H̄ ∗], φr) the elliptic algebra Uq,p(ŝl2).

The following relations are also useful.

Proposition 1.6.

[K(u), P ] = K(u), [E(u), P ] = 2E(u), [F(u), P ] = 0,

[K(u), P + h] = K(u), [E(u), P + h] = 0, [F(u), P + h] = 2F(u).

1.2. The RLL relation for Uq,p(ŝl2)

We next summarize the RLL relation for Uq,p(ŝl2) [2]. In the following section, the L operator
is used to discuss the H-Hopf algebroid structure of Uq,p(ŝl2).

Let us define the half currents in the following way.

Definition 1.7.

K+(u) = K

(
u +

r + 1

2

)
,

E+(u) = a∗
∮

C∗
E(u′)

[u − u′ + c/2 − P + 1]∗[1]∗

[u − u′ + c/2]∗[P − 1]∗
dz′

2π iz′ ,

F +(u) = a

∮
C

F (u′)
[u − u′ + P + h − 1][1]

[u − u′][P + h − 1]

dz′

2π iz′ .

Here the contours are chosen such that

C∗ : |p∗qcz| < |z′| < |qcz|, C : |pz| < |z′| < |z|,
and the constants a, a∗ are chosen to satisfy a∗a[1]∗κ

q−q−1 = 1.

4
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Definition 1.8. We define the operator L̂+(u) ∈ EndCV ⊗ Uq,p

(
ŝl2

)
with V ∼= C

2, by

L̂+(u) =
(

1 F +(u)

0 1

)(
K+(u − 1) 0

0 K+(u)−1

)(
1 0

E+(u) 1

)
.

Proposition 1.9. The operator L̂+(u) satisfies the following RLL relation:

R+(12)(u1 − u2, P + h)L̂+(1)(u1)L̂
+(2)(u2) = L̂+(2)(u2)L̂

+(1)(u1)R
+∗(12)(u1 − u2, P ), (1.2)

where R+(u, P +h) and R+∗(u, P ) = R+(u, P )|r→r∗ denote the elliptic dynamical R matrices
given by

R+(u, s) = ρ+(u)

⎛⎜⎜⎝
1

b(u, s) c(u, s)

c̄(u, s) b̄(u, s)

1

⎞⎟⎟⎠ , (1.3)

with

b(u, s) = [s + 1][s − 1]

[s]2

[u]

[1 + u]
, c(u, s) = [1]

[s]

[s + u]

[1 + u]
,

c̄(u, s) = [1]

[s]

[s − u]

[1 + u]
, b̄(u, s) = [u]

[1 + u]
.

Note that if we set L+(u, P ) = L̂+(u) e−h⊗Q,L+(u, P ) is independent of Q and satisfies
the dynamical RLL relation [2] characterizing the quasi-Hopf algebraBq,λ(ŝl2) [4]. Moreover,
with the parametrization λ = (r∗ + 2)�0 + (P + 1)�̄1, where �0,�0 + �̄1 are the fundamental
weights of ŝl2,Bq,λ(ŝl2) is isomorphic to F[Uq(ŝl2)], as an associative algebra. These two
facts lead to the isomorphism Uq,p(ŝl2) ∼= Bq,λ(ŝl2) ⊗C C[H̄ ∗] as a semi-direct product C-
algebra. However, this semi-direct product breaks down the quasi-Hopf algebra structure, so
that Uq,p(ŝl2) is not a quasi-Hopf algebra. In the following section, we show that a relevant
co-algebra structure of Uq,p(ŝl2) is the H-Hopf algebroid.

Note also that the c = 0 case of the dynamical RLL relation for Bq,λ(ŝl2) coincides with
the one studied by Felder [5, 6], whereas the c = 0 case of (1.2) coincides with the RLL

relation studied in [7–9] for the trigonometric R and in [10] for the elliptic R.

2. H-Hopf algebroid structure of Uq, p(ŝl2)

In this section, we introduce an H-Hopf algebroid structure into Uq,p(ŝl2). The detailed
discussion will be published elsewhere [11]. We follow the definition of H-Hopf algebroid
given in [7–10] with a modification which makes it applicable in the case with nonzero central
element.

Let h̄ = Ch be the Cartan subalgebra, α1 the simple root and �̄1 be the fundamental
weight of sl2. We set Q = Zα1 and h̄∗ = C�̄1. Let us use the same symbol 〈, 〉 to denote the
standard paring of h̄ and h̄∗. Using the isomorphism φ : Q → H̄ ∗ by nα1 	→ nQ, we define
the H̄ ∗-bigrading structure of Uq,p = Uq,p(ŝl2) by

Uq,p =
⊕

α,β∈H̄ ∗
(Uq,p)αβ,

(Uq,p)αβ =
{
x ∈ Uq,p

∣∣∣∣ qhxq−h = q〈ᾱ,h〉x, α = φ(ᾱ) + β

qP xq−P = q〈β,P 〉x

}
.

(2.1)

Noting 〈ᾱ, h〉 = 〈φ(ᾱ), P 〉, we have qP +hxq−(P +h) = q〈α,P 〉x for x ∈ (Uq,p)αβ .

5
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We regard f̂ = f (P, r∗) ∈ F as a meromorphic function on H ∗ by

f̂ (µ) = f (〈µ,P 〉, 〈µ, r∗〉), µ ∈ H ∗

and consider the field of meromorphic functions MH ∗ on H ∗ given by

MH ∗ = {f̂ : H ∗ → C|f̂ = f (P, r∗) ∈ F}.
We define two embeddings (the left and right moment maps) µl, µr : MH ∗ → (Uq,p)00 by

µl(f̂ ) = f (P + h, r∗ + c), µr(f̂ ) = f (P, r∗). (2.2)

From (2.1), one finds for x ∈ (Uq,p)αβ

µl(f̂ )x = f (P + h, r∗ + c)x = xf (P + h + 〈α, P 〉, r∗ + c) = xµl(Tαf̂ ),

µr(f̂ )x = f (P, r∗)x = xf (P + 〈β, P 〉, r∗) = xµr(Tβf̂ ),

where we regard Tα = eα ∈ C[H̄ ∗] as a shift operator MH ∗ → MH ∗

(Tαf̂ ) = eαf (P, r∗) e−α = f (P + 〈α, P 〉, r∗).

Hereafter, we abbreviate f (P + h, r∗ + c) and f (P, r∗) as f (P + h) and f ∗(P ), respectively.
Then equipped with the bigrading structure (2.1) and two moment maps (2.2), the elliptic

algebra Uq,p(ŝl2) is an H-algebra [7, 8].
In addition, we need the H-algebra D of the shift operators given by

D =
{∑

i

f̂ iTαi

∣∣∣∣f̂ i ∈ MH ∗ , αi ∈ H̄ ∗
}

,

(D)αα = {f̂ T−α}, (D)αβ = 0 α �= β,

µD
l (f̂ ) = µD

r (f̂ ) = f̂ T0, f̂ ∈ MH ∗ .

Let A and B be two H-algebras, Uq,p orD. The tensor product A ⊗̃ B is the bigraded
vector space with

(A ⊗̃ B)αβ =
⊕
γ∈H̄ ∗

(
Aαγ ⊗MH∗ Bγβ

)
,

where ⊗MH∗ denotes the usual tensor product modulo the following relations:

µA
r (f̂ )a ⊗ b = a ⊗ µB

l (f̂ )b, a ∈ A, b ∈ B. (2.3)

Then the tensor product A ⊗̃ B is again an H-algebra with the multiplication (a ⊗b)(c⊗d) =
ac ⊗ bd and the moment maps

µA⊗̃B
l = µA

l ⊗ 1, µA⊗̃B
r = 1 ⊗ µB

r .

Note that we have the H-algebra isomorphism Uq,p ⊗̃D ∼= Uq,p
∼= D ⊗̃ Uq,p by x ⊗̃ T−β =

x = T−α ⊗̃ x for x ∈ (Uq,p)αβ .
Now let us define an H-Hopf algebroid structure on Uq,p as its co-algebra structure. For

this purpose, it is convenient to use the L operator L̂+(u). We shall write the entries of L̂+(u)

as

L̂+(u) =
(

L̂+
++(u) L̂+

+−(u)

L̂+
−+(u) L̂+

−−(u)

)
.

From proposition 1.6 and definition 1.8, one finds

L̂+
ε1ε2

(u) ∈ (Uq,p)−ε1Q,−ε2Q.

6
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It is also easy to check the relations

f (P + h)L̂+
ε1ε2

(u) = L̂+
ε1ε2

(u)f (P + h − ε1),

f ∗(P )L̂+
ε1ε2

(u) = L̂+
ε1ε2

(u)f ∗(P − ε2).

Definition 2.1. We define H-algebra homomorphisms, ε : Uq,p → D and � : Uq,p →
Uq,p ⊗̃ Uq,p by

ε
(
L̂+

ε1ε2
(u)

) = δε1,ε2T−ε2Q, ε(eQ) = eQ,

ε(µl(f̂ )) = ε(µr(f̂ )) = f̂ T0,

�
(
L̂+

ε1ε2
(u)

) =
∑
ε′

L̂+
ε1ε′(u) ⊗̃ L̂+

ε′ε2
(u),

�(eQ) = eQ ⊗̃ eQ,

�(µl(f̂ )) = µl(f̂ ) ⊗̃ 1, �(µr(f̂ )) = 1 ⊗̃ µr(f̂ ).

We also define an H-algebra anti-homomorphism S : Uq,p → Uq,p by

S
(
L̂+

++

) = L̂+
−−(u − 1), S

(
L̂+

+−(u)
) = − [P + h + 1]

[P + h]
L̂+

+−(u − 1),

S
(
L̂+

−+(u)
) = − [P ]∗

[P + 1]∗
L̂+

−+(u − 1), S(L̂+
−−(u)) = [P + h + 1][P ]∗

[P + h][P + 1]∗
L̂+

++(u − 1),

S(eQ) = e−Q, S(µr(f̂ )) = µl(f̂ ), S(µl(f̂ )) = µr(f̂ ).

In fact, one can show that � and S preserve the RLL relation (1.2). Moreover, we
have the following lemma indicating that ε,� and S satisfy the axioms for the counit, the
comultiplication and the antipode. Hence the H-algebra Uq,p(ŝl2) with (�, ε, S) is an H-Hopf
algebroid [7–9].

Lemma 2.2. The maps ε, � and S satisfy

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �,

(ε ⊗ id) ◦ � = id = (id ⊗ ε) ◦ �.

m ◦ (id ⊗ S) ◦ �(x) = µl(ε(x)1), ∀x ∈ Uq,p,

m ◦ (S ⊗ id) ◦ �(x) = µr(Tα(ε(x)1)), ∀x ∈ (Uq,p)αβ.

Definition 2.3. We call the H-Hopf algebroid (Uq,p(ŝl2),H,MH ∗ , µl, µr,�, ε, S) the elliptic
quantum group Uq,p(ŝl2).

3. Representations

We consider the dynamical representations, i.e. the representations as H-algebras [7, 8, 12],
of the elliptic algebra Uq.p(ŝl2).

3.1. Evaluation representation

We construct the evaluation representation of Uq,p(ŝl2) by using the one of F[Uq(ŝl2)]. We
define the (l+1)-dimensional vector space over F by V (l) = ⊕l

m=0 Fvl
m. Here, vl

m (0 � m � l)

denote the weight vectors satisfying hvl
m = (l − 2m)vl

m. Consider the operator S± acting on

7
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V (l) by S±vl
m = vl

m∓1, v
l
m = 0 for m < 0,m > l. In terms of the Drinfeld generators, the

evaluation representation
(
πl,w, V (l)

w = V (l) ⊗ C[w,w−1]
)

of F[Uq(ŝl2)] is given by [2]

πl,w(c) = 0, πl,w(d) = 0,

πl,w(an) = wn

n

1

q − q−1
((qn + q−n)qnh − (q(l+1)n + q−(l+1)n)),

πl,w(x±(z)) = S±
[±h + l + 2

2

]
q

δ

(
qh±1 w

z

)
.

Note that V (l)
w = ⊕

µ∈{−l,−l+2,...,l} Vµ with Vµ,µ = l − 2m spanned by vl
m ⊗ wn(n ∈ Z).

Let us define the H-algebra DH,V by

DH,V =
⊕

α,β∈H̄ ∗
(DH,V )αβ,

(DH,V )αβ =
{

X ∈ EndCV (l)
w

∣∣∣∣∣X(f ∗(P )v) = f ∗(P − 〈β, P 〉)X(v), v ∈ V (l)
w

X(Vµ) ⊆ Vµ+φ−1(α)−φ−1(β), f
∗(P ) ∈ F

}
,

µ
DH,V

l (f̂ )v = f (P + µ)v, µDH,V

r (f̂ )v = f ∗(P )v

for v ∈ Vµ, then π̂l,w = πl,w ⊗ id : Uq,p(ŝl2) = F[Uq(ŝl2)] ⊗C C[H̄ ∗] → DH,V with
eQvl

m = vl
m yields the H-algebra homomorphism. We call

(
π̂l,w, V (l)

w

)
the dynamical

evaluation representation. In particular, applying this to definitions 1.2, 1.7 and 1.8, we
obtain the following expressions for the images of the L̂+(u) operator.

Theorem 3.1.

π̂l,w

(
L̂+

++(u)
) = −

[
u − v + h+1

2

][
P − l−h

2

][
P + l+h+2

2

]
ϕl(u − v)[P ][P + h + 1]

eQ,

π̂l,w

(
L̂+

+−(u)
) = −S−

[
u − v + h−1

2 + P
][

l−h+2
2

]
ϕl(u − v)[P + h − 1]

e−Q,

π̂l,w

(
L̂+

−+(u)
) = S+

[
u − v − h+1

2 − P
][

l+h+2
2

]
ϕl(u − v)[P ]

eQ,

π̂l,w(L̂+
−−(u)) = −

[
u − v − h−1

2

]
ϕl(u − v)

e−Q,

where we set z = q2u, w = q2v and

ϕl(u) = −z−l/2rρ+
1l (z, p)−1

[
u +

l + 1

2

]
,

ρ+
kl(z, p) = qkl/2 {pqk−l+2z}{pq−k+l+2z}

{pqk+l+2z}{pq−k−l+2z}
{qk+l+2/z}{q−k−l+2/z}
{qk−l+2/z}{q−k+l+2/z} .

The following proposition indicates a consistency of our construction of π̂l,w and the
fusion construction of the dynamical R matrices (face-type Boltzmann weights).

Proposition 3.2. Let us define the matrix elements of π̂l,w

(
L̂+

ε1ε2
(u)

)
by

π̂l,w

(
L̂+

ε1ε2
(u)

)
vl

m =
l∑

m′=0

(
L̂+

ε1ε2
(u)

)
µm′µm

vl
m′ ,

where µm = l − 2m. Then we have(
L̂+

ε1ε2
(u)

)
µm′µm

= R+
1l (u − v, P )ε2µm

ε1µm′ .

8
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Here, R+
1l (u−v, P ) is the R matrix from (C.17) in [2]. The case l = 1, R+

11(u−v, P ) coincides
with the image (π1,z ⊗ π1,w) of the universal R matrix R+(λ) [4] given in (1.3). The case
l > 1, R+

1l (u − v, P ) coincides with the R matrix obtained by fusing R+
11(u − v, P ) l-times. In

particular, the matrix element R+
1l (u − v, P )ε

′µ′
εµ is gauge equivalent to the fusion face weight

Wl1(P + ε′, P + ε′ + µ′, P + µ,P |u − v) from (4) in [13].

3.2. Infinite dimensional representation

Let V (λl) be the level-k(c = k) irreducible highest weight F[Uq(ŝl2)]-module of highest
weight λl = (k − l)�0 + l�1 (0 � l � k). Here, �i (i = 0, 1) denote the fundamental weights
of ŝl2. We regard V̂ (λ) = ⊕

m∈Z
V (λ) ⊗ C e−mQ as the Uq,p(ŝl2)-module [2].

We realize V̂ (λl) by using the Drinfeld generators an(n ∈ Z�=0) and the q-deformed
Zk-parafermion algebra [1, 2, 14]. Let us define αn(n ∈ Z�=0) by

αn =
{

an for n > 0
[rn]q
[r∗n]q

qk|n|an for n < 0,

with r∗ = r − k. Then we have

[αm, αn] = [2m]q[km]q
m

[rm]q
[r∗m]q

δm+n,0.

The q-deformed Zk-parafermion algebra is an associative algebra over C generated by
�+,

µ

k
−n,�−,

µ

k
−n(µ, n ∈ Z). Consider the generating functions (parafermion fields)

�(z) ≡ �+(z) =
∑
n∈Z

�+,
µ

k
−nz

−µ/k+n−1,

�†(z) ≡ �−(z) =
∑
n∈Z

�−,
µ

k
−nz

µ/k+n−1

defined on a weight vector v satisfying qhv = qµv. The parafermion fields �(z) and �†(z)
satisfy( z

w

)2/k (x−2w/z; x2k)∞
(x2+2kw/z; x2k)∞

�±(z)�±(w) =
(

w

z

)2/k
(x−2z/w; x2k)∞
(x2+2kz/w; x2k)∞

�±(w)�±(z),

( z

w

)−2/k (x2+kw/z; x2k)∞
(x−2+kw/z; x2k)∞

�±(z)�∓(w) −
(

w

z

)−2/k
(x2+kz/w; x2k)∞
(x−2+kz/w; x2k)∞

�∓(w)�±(z)

= 1

x − x−1

(
δ

(
xk w

z

)
− δ

(
x−k w

z

))
.

Theorem 3.3. [14] By using the irreducible q-Zk parafermion module HPF
l,M , the level-k

irreducible highest weight Uq,p(ŝl2)-module V̂ (λl) is realized as follows:

V̂ (λl) =
⊕
m∈Z

⊕
n∈Z

2k−1⊕
M≡0 mod 2k
(M≡l mod 2)

V̂ (λl)M+2kn+m,

V̂ (λl)M+2kn+m = F[α−m(m ∈ Z>0)] ⊗ HPF
l,M ⊗ Ce(M+2kn)α/2 ⊗ Ce−mQ.

The action of the elliptic currents on V̂ (λl) are given by

K(u) 	→: exp

⎛⎝−
∑
m�=0

[m]q
[2m]q[rm]q

α−mzm

⎞⎠ : eQz−k(2P−1)/4rr∗+h/2r ,

9
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E(u) 	→ �(z) : exp

⎛⎝−
∑
m�=0

1

[km]q
αmz−m

⎞⎠ : e2Q+α1z(h+1)/2−(P−1)/r∗
,

F (u) 	→ �(z)† : exp

⎛⎝∑
m�=0

[r∗m]q
[km]q[rm]q

αmz−m

⎞⎠ : e−α1z−(h−1)/2+(P +h−1)/r .

Let (π̂V , V ), (π̂W ,W) be two dynamical representations of Uq,p. We define the tensor
product V ⊗̃ W by

V ⊗̃ W =
⊕
α∈h̄∗

(V ⊗̃ W)α, (V ⊗̃ W)α =
⊕
β∈h̄∗

Vβ ⊗MH∗ Wα−β,

where ⊗MH∗ denotes the usual tensor product modulo the relation

f ∗(P )v ⊗ w = v ⊗ f (P + h)w, (3.1)

then (π̂V ⊗̃ π̂W )◦� : Uq,p → DH,V ⊗̃DH,W is a dynamical representation of Uq,p on V ⊗̃ W .

4. Vertex operators

By using the H-Hopf algebroid structure, we define the types I and II vertex operators of
Uq,p(ŝl2) as intertwiners of Uq,p(ŝl2) modules. Investigating their intertwining relations, we
show that they coincide with those obtained in [2] by using the quasi-Hopf algebra structure
of Bq,λ(ŝl2) and the isomorphism Uq,p(ŝl2) ∼= Bq,λ(ŝl2) ⊗C C[H̄ ∗].

Definition 4.1. The types I and II vertex operators of spin n/2 are the intertwiners of Uq,p-
modules of the form

�̂(u) : V̂ (λ) → V (n)
z ⊗̃ V̂ (ν),

�̂∗(u) : V̂ (λ) ⊗̃ V (n)
z → V̂ (ν),

where z = q2u, and V̂ (λ) and V̂ (ν) denote the level-k highest weight Uq,p-modules of highest
weights λ and ν, respectively. They satisfy the intertwining relations with respect to the
comultiplication � in definition 2.1.

�(x)�̂(u) = �̂(u)x ∀x ∈ Uq,p, (4.1)

x�̂∗(u) = �̂∗(u)�(x) ∀x ∈ Uq,p. (4.2)

The physically interesting cases are n = k, λ = λl, ν = λk−l for the type I and n = 1, λ = λl,

ν = λl±1 for the type II. See, for example, [14].
Let us define the components of the vertex operators as follows:

�̂

(
v − 1

2

)
=

n∑
m=0

vn
m ⊗̃ �m(v), (4.3)

�̂∗
(

v − c + 1

2

)( · ⊗̃ vn
m

) = �∗
m(v). (4.4)

Theorem 4.2. The vertex operators satisfy the following linear equations:

�̂(u)L̂+(v) = R
+(12)
1n (v − u, P + h)L̂+(v)�̂(u), (4.5)

10



J. Phys. A: Math. Theor. 41 (2008) 194012 H Konno

L̂+(v)�̂∗(u) = �̂∗(u)L̂+(v)R
+∗(13)
1n (v − u, P − h(1) − h(3)). (4.6)

Relation (4.5) should be understood on V (1)
w ⊗̃ V̂ (λ), whereas (4.6) on V (1)

w ⊗̃ V̂ (λ) ⊗̃ V (n)
z .

Proof. Applying � in definition 2.1 and noting proposition 3.2, we obtain from (4.1)

�̂(u)L̂+
ε1ε2

(v) = �
(
L̂+

ε1ε2
(v)

)
�̂(u)

=
n∑

m=0

∑
ε

L̂+
ε1ε

(v)vn
m ⊗̃ L̂+

εε2
(v)�m(u)

=
n∑

m=0

∑
ε

n∑
m′=0

R+
1n(v − u, P )εµm

ε1µm′ v
n
m′ ⊗̃ L̂+

εε2
(v)�m(u)

=
n∑

m′=0

vn
m′ ⊗̃

n∑
m=0

∑
ε

R+
1n(v − u, P + h)εµm

ε1µm′ L̂
+
εε2

(v)�m(u),

where µm = n − 2m, etc. In the last equality we used (3.1). Similarly, for the type II, from
(4.2), we obtain

L̂+
ε1ε2

(u)�∗
m

(
v +

1

2

)
= �̂∗

(
v +

1

2

)
�
(
L̂+

ε1ε2
(u)

)( · ⊗̃ vn
m

)
=
∑

ε

∑
m′

�̂∗
(

v +
1

2

)(
L̂+

ε1ε
(u) ⊗̃ R+

1n(u − v, P )ε2µm

εµm′ v
n
m′
)

=
∑

ε

∑
m′

�̂∗
(

v +
1

2

)(
R+∗

1n (u − v, P − µm′)ε2µm

εµm′ L̂+
ε1ε

(u) ⊗̃ vn
m′
)

=
∑

ε

�∗
m′

(
v +

1

2

)
R+∗

1n (u − v, P − µm′)ε2µm

εµm′ L̂+
ε1ε

(u)

=
∑

ε

�∗
m′

(
v +

1

2

)
L̂+

ε1ε
(u)R+∗

1n (u − v, P − µm′ − ε)ε2µm

εµm′ .

Here in the third equality, we used relation (3.1). Note also ε + µm′ = ε2 + µm. �

Equations (4.5) and (4.6) coincide with (5.3) and (5.4) in [2], respectively. Note
that the comultiplication used in [2] corresponds to the opposite one of � here. Under
certain analyticity conditions, these equations determine the vertex operators uniquely up to
normalization.
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[11] Konno H Elliptic quantum group Uq,p(ŝl2), Hopf algebroid structure and elliptic hypergeometric series (in

preparation)
[12] Felder G and Varchenko A 1996 On representations of the elliptic quantum groups Eτ,η(sl2) Commun. Math.

Phys. 181 741–61
[13] Date E, Jimbo M, Miwa T and Okado M 1986 Fusion of the eight-vertex SOS model Lett. Math. Phys. 12 209–15
[14] Kojima T, Konno H and Weston R 2005 The vertex-face correspondence and correlation functions of the fusion

eight-vertex models: I. The general formalism Nucl. Phys. B 720 348–98

12

http://dx.doi.org/10.1007/BF01238562
http://dx.doi.org/10.1007/s002200050407
http://dx.doi.org/10.1007/s002200050437
http://dx.doi.org/10.1007/s002200050665
http://dx.doi.org/10.1023/A:1013071729320
http://dx.doi.org/10.1007/s00220-003-1016-0
http://dx.doi.org/10.1007/BF02101296
http://dx.doi.org/10.1007/BF00416511
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.012

	1. The elliptic algebra
	1.1. Definition of
	1.2. The RLL relation

	2. H-Hopf algebroid structure of
	3. Representations
	3.1. Evaluation representation
	3.2. Infinite dimensional representation

	4. Vertex operators
	Acknowledgments
	References

